Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a }}$ Sema<br>Öztürk, ${ }^{\text {a * }}$ Tevfik Rıza Kök ${ }^{\text {b }}$ and Hoong-Kun Fun ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ${ }^{\text {c } X \text {-ray Crystallography }}$ Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: ozturk@erciyes.edu.tr

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.045$
$w R$ factor $=0.100$
Data-to-parameter ratio $=21.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

## 2,2-Diphenyl-1,3,2-dithiagermole-4,5dicarbonitrile

The title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{GeS}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}$, crystallizes with two molecules in the asymmetric unit. Each five-membered ring has an envelope conformation.

## Comment

The X-ray investigation of the title compound, (I), was undertaken as part of our study of the structure and conformation of new germanium complexes.

(I)

In the title compound, (I), the average $\mathrm{Ge}-\mathrm{S}$ and $\mathrm{Ge}-\mathrm{C}$ bond lengths are 2.2530 (13) and 1.926 (5) $\AA$, respectively, in agreement with the literature values (Allen et al., 1987; Liu et al., 2002).

The title compound crystallizes with two molecules (denoted $A$ and $B$ ) in the asymmetric unit. In molecule $A$, the dihedral angle between the five-membered ring and phenyl ring $\mathrm{C} 1 A-\mathrm{C} 6 A$ is $82.4(1)^{\circ}$, that between the five-membered ring and phenyl ring $\mathrm{C} 7 A-\mathrm{C} 12 A$ is 66.1 (1) $)^{\circ}$ and the angle between the two phenyl rings is $55.8(2)^{\circ}$. The corresponding angles in molecule $B$ are 73.1 (1), 79.1 (1) and $58.9(1)^{\circ}$, respectively. Each five-membered ring has an envelope conformation, the flaps $\mathrm{Ge} 1 A$ and $\mathrm{Ge} 1 B$ being displaced from the planes of the other ring atoms by 0.4115 (4) and 0.3467 (5) $\AA$, respectively. In 2,2-dimethyl-[1,3,2]dithia-germole-4,5-dicarbonitrile, $\mathrm{Me}_{2} \mathrm{GeS}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}$ (Ewert, 1983), the five-membered ring also has an envelope conformation.

## Experimental

Under an argon atmosphere, a stirred aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}$ was added dropwise to a solution of $\mathrm{Ph}_{2} \mathrm{GeBr}_{2}$ in $\mathrm{CH}_{3} \mathrm{Cl}$ (1:1). This mixture was stirred at room temperature for 1 h . After filtration, the coloured solid was dried over anhydrous $\mathrm{MgSO}_{4}$. The solvent was then evaporated and the product crystallized from absolute toluene. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{GeN}_{2} \mathrm{~S}_{2}$ : C $52.10, \mathrm{H}$ 2.82, Ge 19.00, S $17.39 \%$; found: C 52.32, H $2.74, \mathrm{Ge}, 19.78$, S $17.47 \%$. M.p.: 416 K. IR, $v\left(\mathrm{~cm}^{-1}\right): 2220(\mathrm{C}-\mathrm{N}), 700(\mathrm{C}-\mathrm{S}), 405(\mathrm{Ge}-\mathrm{S}), 310$ $(\mathrm{Ge}-\mathrm{C}) .{ }^{1} \mathrm{H}$ NMR ( $\delta$, p.p.m., 200 MHz ): 7.56. ${ }^{13} \mathrm{C}$ NMR ( $\delta$, p.p.m., $200 \mathrm{MHz}): 132.25(\alpha), 133.84(\beta), 129.60(\gamma), 132.44(\delta), 119.63$ $(\mathrm{C}=\mathrm{C}), 112.96(\mathrm{CN})$.

Received 11 July 2003
Accepted 23 July 2003
Online 31 July 2003


Figure 1
Views of the two independent molecules of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the $50 \%$ probability level. H atoms have been omitted.


Figure 2
A packing diagram of the title compound, (I), viewed along the $b$ axis.

## Crystal data

| $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{GeN}_{2} \mathrm{~S}_{2}$ | $D_{x}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$ <br> $M_{r}=367.01$ |
| :--- | :--- |
| Monoclinic, $P 2_{1} / c$ | Mo $K \alpha$ radiation |
| $a=15.3121(11) \AA$ | Cell parameters from 5356 |
| $b=14.0064(10) \AA$ | reflections |
| $c=15.7730(11) \AA$ | $\theta=2.4-24.7^{\circ}$ |
| $\beta=105.3900(10)^{\circ}$ | $\mu=2.13 \mathrm{~mm}^{-1}$ |
| $V=3261.5(4) \AA^{3}$ | $T=293 \mathrm{~K}$ |
| $Z=8$ | Slab, light brown |
|  | $0.40 \times 0.40 \times 0.20 \mathrm{~mm}$ |
| Data collection |  |
| Siemens SMART CCD area- | 7949 independent reflections |
| $\quad$ detector diffractometer | 4421 reflections with $I>2 \sigma(I)$ |
| $\omega$ scans | $R_{\text {int }}=0.046$ |
| Absorption correction: multi-scan | $\theta_{\text {max }}=28.3^{\circ}$ |
| $\quad(S A D A B S ;$ Sheldrick, 1996) | $h=-16 \rightarrow 20$ |
| $T_{\text {min }}=0.483, T_{\text {max }}=0.676$ | $k=-18 \rightarrow 13$ |
| 19 939 measured reflections | $l=-20 \rightarrow 21$ |
|  |  |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.100$
$S=1.04$
7949 reflections
379 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{Ge} 1 A-\mathrm{S} 1 A$ | $2.2484(11)$ | $\mathrm{S} 1 A-\mathrm{C} 13 A$ | $1.742(3)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Ge} 1 A-\mathrm{S} 2 A$ | $2.2616(12)$ | $\mathrm{S} 2 A-\mathrm{C} 15 A$ | $1.751(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{C} 1 A$ | $1.926(3)$ | $\mathrm{S} 1 B-\mathrm{C} 13 B$ | $1.737(4)$ |
| $\mathrm{Ge} 1 A-\mathrm{C} 7 A$ | $1.931(4)$ | $\mathrm{S} 2 B-\mathrm{C} 15 B$ | $1.742(5)$ |
| $\mathrm{Ge} 1 B-\mathrm{C} 1 B$ | $1.922(3)$ | $\mathrm{N} 1 A-\mathrm{C} 14 A$ | $1.136(6)$ |
| $\mathrm{Ge} 1 B-\mathrm{C} 7 B$ | $1.926(5)$ | $\mathrm{N} 2 A-\mathrm{C} 16 A$ | $1.135(6)$ |
| $\mathrm{Ge} 1 B-\mathrm{S} 2 B$ | $2.2480(11)$ | $\mathrm{N} 1 B-\mathrm{C} 14 B$ | $1.123(7)$ |
| $\mathrm{Ge} 1 B-\mathrm{S} 1 B$ | $2.2539(13)$ | $\mathrm{N} 2 B-\mathrm{C} 16 B$ | $1.136(6)$ |
|  |  |  |  |
| $\mathrm{S} 1 A-\mathrm{Ge} 1 A-\mathrm{S} 2 A$ | $95.16(4)$ | $\mathrm{Ge} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A$ | $121.6(3)$ |
| $\mathrm{S} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 1 A$ | $112.76(11)$ | $\mathrm{Ge} 1 A-\mathrm{C} 7 A-\mathrm{C} 12 A$ | $121.4(3)$ |
| $\mathrm{S} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 7 A$ | $113.55(11)$ | $\mathrm{S} 1 A-\mathrm{C} 13 A-\mathrm{C} 14 A$ | $114.1(3)$ |
| $\mathrm{S} 2 A-\mathrm{Ge} 1 A-\mathrm{C} 1 A$ | $110.94(11)$ | $\mathrm{S} 1 A-\mathrm{C} 13 A-\mathrm{C} 15 A$ | $124.8(2)$ |
| $\mathrm{S} 2 A-\mathrm{Ge} 1 A-\mathrm{C} 7 A$ | $108.90(14)$ | $\mathrm{N} 1 A-\mathrm{C} 14 A-\mathrm{C} 13 A$ | $178.2(5)$ |
| $\mathrm{C} 1 A-\mathrm{Ge} 1 A-\mathrm{C} 7 A$ | $113.94(16)$ | $\mathrm{S} 2 A-\mathrm{C} 15 A-\mathrm{C} 16 A$ | $114.5(2)$ |
| $\mathrm{S} 1 B-\mathrm{Ge} 1 B-\mathrm{S} 2 B$ | $95.40(4)$ | $\mathrm{S} 2 A-\mathrm{C} 15 A-\mathrm{C} 13 A$ | $124.3(2)$ |
| $\mathrm{S} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 1 B$ | $109.02(11)$ | $\mathrm{N} 2 A-\mathrm{C} 16 A-\mathrm{C} 15 A$ | $177.6(4)$ |
| $\mathrm{S} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 7 B$ | $109.22(14)$ | $\mathrm{Ge} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B$ | $120.0(3)$ |
| $\mathrm{S} 2 B-\mathrm{Ge} 1 B-\mathrm{C} 1 B$ | $114.03(12)$ | $\mathrm{Ge} 1 B-\mathrm{C} 1 B-\mathrm{C} 6 B$ | $121.9(3)$ |
| $\mathrm{S} 2 B-\mathrm{Ge} 1 B-\mathrm{C} 7 B$ | $111.25(13)$ | $\mathrm{Ge} 1 B-\mathrm{C} 7 B-\mathrm{C} 8 B$ | $119.6(3)$ |
| $\mathrm{C} 1 B-\mathrm{Ge} 1 B-\mathrm{C} 7 B$ | $115.88(17)$ | $\mathrm{Ge} 1 B-\mathrm{C} 7 B-\mathrm{C} 12 B$ | $121.4(4)$ |
| $\mathrm{Ge} 1 A-\mathrm{S} 1 A-\mathrm{C} 13 A$ | $96.94(11)$ | $\mathrm{S} 1 B-\mathrm{C} 13 B-\mathrm{C} 14 B$ | $114.0(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{S} 2 A-\mathrm{C} 15 A$ | $96.45(11)$ | $\mathrm{S} 1 B-\mathrm{C} 13 B-\mathrm{C} 15 B$ | $124.8(3)$ |
| $\mathrm{Ge} 1 B-\mathrm{S} 1 B-\mathrm{C} 13 B$ | $96.71(12)$ | $\mathrm{N} 1 B-\mathrm{C} 14 B-\mathrm{C} 13 B$ | $178.2(5)$ |
| $\mathrm{Ge} 1 B-\mathrm{S} 2 B-\mathrm{C} 15 B$ | $96.78(15)$ | $\mathrm{S} 2 B-\mathrm{C} 15 B-\mathrm{C} 13 B$ | $124.6(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$ | $119.4(3)$ | $\mathrm{S} 2 B-\mathrm{C} 15 B-\mathrm{C} 16 B$ | $115.3(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{C} 1 A-\mathrm{C} 6 A$ | $121.2(3)$ | $\mathrm{N} 2 B-\mathrm{C} 16 B-\mathrm{C} 15 B$ | $179.3(5)$ |
|  |  |  |  |
| $\mathrm{Ge} 1 A-\mathrm{S} 1 A-\mathrm{C} 13 A-\mathrm{C} 14 A$ | $171.5(2)$ | $\mathrm{Ge} 1 B-\mathrm{S} 1 B-\mathrm{C} 13 B-\mathrm{C} 15 B$ | $-8.9(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{S} 1 A-\mathrm{C} 13 A-\mathrm{C} 15 A$ | $-9.3(3)$ | $\mathrm{Ge} 1 B-\mathrm{S} 1 B-\mathrm{C} 13 B-\mathrm{C} 14 B$ | $174.4(3)$ |
| $\mathrm{Ge} 1 A-\mathrm{S} 2 A-\mathrm{C} 15 A-\mathrm{C} 13 A$ | $11.8(3)$ | $\mathrm{Ge} 1 B-\mathrm{S} 2 B-\mathrm{C} 15 B-\mathrm{C} 13 B$ | $9.0(4)$ |
| $\mathrm{Ge} 1 A-\mathrm{S} 2 A-\mathrm{C} 15 A-\mathrm{C} 16 A-171.7(2)$ | $\mathrm{Ge} 1 B-\mathrm{S} 2 B-\mathrm{C} 15 B-\mathrm{C} 16 B-170.5(3)$ |  |  |

All H atoms were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and refined in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of their parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Ewert, I. (1983). MSc thesis, University of Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Liu, Y., Ballweg, D., Müller, T., Guzei, I. A., Clark, R. W. \& West, R. (2002). J. Am. Chem. Soc. 124, 12174-12181.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

