metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a Sema Öztürk,^a* Tevfik Rıza Kök^b and Hoong-Kun Fun^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.045 wR factor = 0.100 Data-to-parameter ratio = 21.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $(C_6H_5)_2GeS_2C_2(CN)_2$, crystallizes with two molecules in the asymmetric unit. Each five-membered ring has an envelope conformation.

2,2-Diphenyl-1,3,2-dithiagermole-4,5-

Received 11 July 2003 Accepted 23 July 2003 Online 31 July 2003

Comment

dicarbonitrile

The X-ray investigation of the title compound, (I), was undertaken as part of our study of the structure and conformation of new germanium complexes.

In the title compound, (I), the average Ge–S and Ge–C bond lengths are 2.2530 (13) and 1.926 (5) Å, respectively, in agreement with the literature values (Allen *et al.*, 1987; Liu *et al.*, 2002).

The title compound crystallizes with two molecules (denoted A and B) in the asymmetric unit. In molecule A, the dihedral angle between the five-membered ring and phenyl ring C1A–C6A is 82.4 (1)°, that between the five-membered ring and phenyl ring C7A–C12A is 66.1 (1)° and the angle between the two phenyl rings is 55.8 (2)°. The corresponding angles in molecule B are 73.1 (1), 79.1 (1) and 58.9 (1)°, respectively. Each five-membered ring has an envelope conformation, the flaps Ge1A and Ge1B being displaced from the planes of the other ring atoms by 0.4115 (4) and 0.3467 (5) Å, respectively. In 2,2-dimethyl-[1,3,2]dithiagermole-4,5-dicarbonitrile, Me₂GeS₂C₂(CN)₂ (Ewert, 1983), the five-membered ring also has an envelope conformation.

Experimental

Under an argon atmosphere, a stirred aqueous solution of Na₂S₂C₂(CN)₂ was added dropwise to a solution of Ph₂GeBr₂ in CH₃Cl (1:1). This mixture was stirred at room temperature for 1 h. After filtration, the coloured solid was dried over anhydrous MgSO₄. The solvent was then evaporated and the product crystallized from absolute toluene. Analysis calculated for C₁₆H₁₀GeN₂S₂: C 52.10, H 2.82, Ge 19.00, S 17.39%; found: C 52.32, H 2.74, Ge, 19.78, S 17.47%. M.p.: 416 K. IR, ν (cm⁻¹): 2220 (C–N), 700 (C–S), 405 (Ge–S), 310 (Ge–C). ¹H NMR (δ , p.p.m., 200 MHz): 7.56. ¹³C NMR (δ , p.p.m., 200 MHz): 132.25 (α), 133.84 (β), 129.60 (γ), 132.44 (δ), 119.63 (C=C), 112.96 (CN).

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Views of the two independent molecules of (I), with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.

Figure 2

A packing diagram of the title compound, (I), viewed along the b axis.

Crystal data

$C_{16}H_{10}GeN_2S_2$	$D_x = 1.495 \text{ Mg m}^{-3}$		
$M_r = 367.01$	Mo $K\alpha$ radiation		
Monoclinic, $P2_1/c$	Cell parameters from 5356		
a = 15.3121 (11) Å	reflections		
b = 14.0064 (10) Å	$\theta = 2.4 - 24.7^{\circ}$		
c = 15.7730 (11) Å	$\mu = 2.13 \text{ mm}^{-1}$		
$\beta = 105.3900 \ (10)^{\circ}$	T = 293 K		
$V = 3261.5 (4) \text{ Å}^3$	Slab, light brown		
<i>Z</i> = 8	$0.40 \times 0.40 \times 0.20 \text{ mm}$		
Data collection			
Siemens SMART CCD area-	7949 independent reflections		
detector diffractometer	4421 reflections with $I > 2\sigma(I)$		
ω scans	$R_{\rm int} = 0.046$		
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$		
(SADABS: Sheldrick 1996)	$h = -16 \rightarrow 20$		

 $k = -18 \rightarrow 13$

 $l = -20 \rightarrow 21$

(SADABS; Sheldrick, 1996) $T_{min} = 0.483, T_{max} = 0.676$ 19 939 measured reflections Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0286P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 1.6083P]
$wR(F^2) = 0.100$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
7949 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
379 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ge1A-S1A	2.2484 (11)	S1A-C13A	1.742 (3)
Ge1A-S2A	2.2616 (12)	S2A-C15A	1.751 (3)
Ge1A-C1A	1.926 (3)	S1B-C13B	1.737 (4)
Ge1A - C7A	1.931 (4)	S2B-C15B	1.742 (5)
Ge1B-C1B	1.922 (3)	N1A - C14A	1.136 (6)
Ge1B-C7B	1.926 (5)	N2A-C16A	1.135 (6)
Ge1 <i>B</i> -S2 <i>B</i>	2.2480 (11)	N1B-C14B	1.123 (7)
Ge1B-S1B	2.2539 (13)	N2B-C16B	1.136 (6)
S1A-Ge1A-S2A	95.16 (4)	Ge1A-C7A-C8A	121.6 (3)
S1A-Ge1A-C1A	112.76 (11)	Ge1A-C7A-C12A	121.4 (3)
\$1A-Ge1A-C7A	113.55 (11)	S1A-C13A-C14A	114.1 (3)
\$2A-Ge1A-C1A	110.94 (11)	S1A-C13A-C15A	124.8 (2)
\$2A-Ge1A-C7A	108.90 (14)	N1A-C14A-C13A	178.2 (5)
C1A - Ge1A - C7A	113.94 (16)	S2A-C15A-C16A	114.5 (2)
S1B-Ge1B-S2B	95.40 (4)	S2A-C15A-C13A	124.3 (2)
S1B-Ge1B-C1B	109.02 (11)	N2A-C16A-C15A	177.6 (4)
\$1 <i>B</i> -Ge1 <i>B</i> -C7 <i>B</i>	109.22 (14)	Ge1B-C1B-C2B	120.0 (3)
S2B-Ge1B-C1B	114.03 (12)	Ge1 <i>B</i> -C1 <i>B</i> -C6 <i>B</i>	121.9 (3)
\$2B-Ge1B-C7B	111.25 (13)	Ge1 <i>B</i> -C7 <i>B</i> -C8 <i>B</i>	119.6 (3)
C1B-Ge1B-C7B	115.88 (17)	Ge1 <i>B</i> -C7 <i>B</i> -C12 <i>B</i>	121.4 (4)
Ge1A-S1A-C13A	96.94 (11)	S1B-C13B-C14B	114.0 (3)
Ge1A-S2A-C15A	96.45 (11)	S1B-C13B-C15B	124.8 (3)
Ge1 <i>B</i> -S1 <i>B</i> -C13 <i>B</i>	96.71 (12)	N1B-C14B-C13B	178.2 (5)
Ge1 <i>B</i> -S2 <i>B</i> -C15 <i>B</i>	96.78 (15)	S2B-C15B-C13B	124.6 (3)
Ge1A - C1A - C2A	119.4 (3)	S2B-C15B-C16B	115.3 (3)
Ge1A - C1A - C6A	121.2 (3)	N2B-C16B-C15B	179.3 (5)
Ge1A-S1A-C13A-C	14A 171.5 (2)	Ge1 <i>B</i> -S1 <i>B</i> -C13 <i>B</i> -C	15B - 8.9 (3)
Ge1A-S1A-C13A-C	15A -9.3 (3)	Ge1 <i>B</i> -S1 <i>B</i> -C13 <i>B</i> -C	14B 174.4 (3
Ge1A-S2A-C15A-C	13A 11.8 (3)	Ge1 <i>B</i> -S2 <i>B</i> -C15 <i>B</i> -C	13B 9.0 (4
Ge1A-S2A-C15A-C	16A-171.7 (2)	Ge1 <i>B</i> -S2 <i>B</i> -C15 <i>B</i> -C	16 <i>B</i> -170.5 (3

All H atoms were placed in geometrically idealized positions, with C-H distances of 0.93 Å, and refined in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}$ of their parent atoms.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Ewert, I. (1983). MSc thesis, University of Bonn, Germany.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Liu, Y., Ballweg, D., Müller, T., Guzei, I. A., Clark, R. W. & West, R. (2002). J. Am. Chem. Soc. **124**, 12174–12181.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.